

Minimally Invasive Bunion Surgery: Methods and Outcomes

Hummira H. Abawi, DPM Diplomate ABPM, AACFAS
Instructor of Orthopedics, University of Maryland Medical Center
Director of Education, Maryland VA Health Care System

Disclosures

- No financial disclosures
- I will not be discussing off the market products

MIS Bunion: Outline

- MIS History
- Soft Tissue and Bone Physics
- Principles in Fracture Healing
- MIS Anatomy Review
- Indications
- Contraindications
- Methods
- Literature Review
- Outcomes

MIS Bunion: History

- 1836 (Gernet) performed the earliest reports of surgical hallux valgus correction
- 1940s: Early reports of percutaneous HV, Podiatrist trying to circumvent the restrictive laws of surgery for Podiatric Physicians.
- 1960s: Power equipment for MIS osteotomy were developed.
- 1960s: Intraoperative Fluoroscopy became available.
- 2000 (Bosch, P): Subcapital osteotomy technique (SCOT)
- 2008 (Giannini): Modification SERI (Simple, Effective, Rapid, Inexpensive)
- 2014/2016 (Siddiqui): A Guide to the Percutaneous Bunionecomy.

MIS: Bone Physics

 Davis's law is used in anatomy and physiology to describe how <u>soft tissue</u> models along imposed demands.

Wolff's law, which applies to <u>osseous tissue</u>. It is a physiological principle stating that soft tissue heal according to the manner in which they are mechanically stressed.

MIS: Phases of bone healing

MIS: Principles of Fracture Healing

MIS: Bone remodeling

Remodelling

Influenced by Wolff's law

Bunion preop/ post op

MIS: Bunion Anatomy

MIS: Anatomy

Plastination plays an important role in long-term preservation of tissue and anatomical teaching.

Malal JJ¹, Shaw-Dunn J, Kumar CS. Blood supply to the first metatarsal head and vessels at risk with a chevron osteotomy. J Bone Joint Surg Am. 2007 Sep;89(9):2018-22.

10 Cadavers

First dorsal metatarsal: Dominant vessel 8/10

First plantar metatarsal

Medial plantar arteries

Plantar-lateral plexus was formed along the metatarsal neck, just proximal to the capsular attachment, with a varying number of branches from the plexus then entering the metatarsal head.

MIS: Bunion Anatomy

MIS: Bunion Anatomy

- Sub-periosteal dissection
 - <u>Dorsal</u> plane only

Preserve the plantar-lateral corner of the metatarsal neck

Kuhn MA¹, et al. Blood flow to the metatarsal head after chevron bunionectomy. Foot Ankle Int. 2005 Jul;26(7):526-9.

N: 20 patients, chevron bunionectomy without tourniquet control by two surgeons.

Blood flow recordings: Periflux PF3 laser Doppler probe

TOTAL: 71%

There was a statistically significant decrease in blood flow to the metatarsal head at each portion of the procedure.

No evidence of AVN at 3 months

All patients had radiographic evidence of union without recurrence or overcorrection.

MIS Bunion: Patient Criteria

Inclusion

- Vascular Intact
- IMA: 10-20+°
- +/- Deviation in HAA
- Vitamin D-25: > 40 nmol/dl
- Revision bunion (>6 mo)
- Spastic or Non-Spastic Bunion
- Medically Stable Co-Morbidities

Exclusion

- Vascular compromise
- Severe OA Joint
- Osteomyelitis surgical site
- Bursa
- History of wound along pin fixation consider internal fixation
- Surgeon Skills

MIS Bunion: Surgical Goals

- Realign the hallux joint access in all three planes
- Improve IM angle
- Restore and maintain a pain free joint
- Improve foot cosmesis
- Return to shoes

MIS: AO Principles Surgical Approach

- Anatomic Reduction
 - IM/ HA reduction in mild to severe
- Stable fixation
 - Internal vs. External
- Preservation of blood supply
 - MIS approach
- Early, active mobilization
 - Immediate WB

MIS: Intra-operative set up

1st drill hole =
"Osteotomy
Guide Wire"

2nd drill hole

3rd drill hole

4th drill hole

© 2015 Sinal Hospital of Baltimore

Pre-Op and Immediate Post-op

3 Months Post-op

MIS: Revision Bunion

Post op Course:

POV # 1: 2-3 weeks
Wound Check, Suture Removal
No X-Rays

Weight bearing:

 WBAT in Surgical Shoe/ Short Cam Boot

POV #2: 4-6 weeks (X-rays)
Pin removal
Pre-Pin Removal

 All CP/ TBI patients Casted and NWB

 Tourniquets: immunocompromised patients

MIS: 2014-2017

- N: 43
- Combined Procedures: HT, Weil, GR, Winograd Procedure, PMR, Flatfoot Recon
- Adductor/ Lateral Release: 7 (Spastic, Frontal Plane)
- Smoker: 3 Active, 5 Unknown
- Co-morbities: DM I and II (5), Hep C (2), HIV (5), CAD, CP (6), TBI, Methadone (2), Active Drug use (1)
- Complications:
 - 2 Pin site infections
 - (1 Surgery, 1 PO Antibiotics)
 - 1 Delayed Union (Vitamin D Def)

MIS: Outcomes

• Pin Pulled: 3-7 weeks

• Cost: \$20-64

• CPT: 28306

Early pin removal:

< 6 weeks: 3 (all due to inadequate pin fixation)

6 weeks: optimal removal time

MIS Bunion: Internal vs. External Fixation

J.M. Yanex Arauz, et al. Bosch osteotomy in hallux valgus. Does the osteosynthesis prevent loss of correction?

Method:

49 feet with symptomatic HV, Bosch osteotomy with percutaneous Akin osteotomy and release of Adductor halluces tendon

Group A: WITH osteosynthesis

Group B: WITHOUT osteosynthesis

Age: 18-73

Mean Follow up: 28 months

Results:

IM angle- no statistical difference

Loss of IM angle higher in group without screw fixation, but NO statistical difference in "P" value

NO pseudoarthrosis in any cases

2 infections at K-wire entry site

Conclusion:

No statistical difference in osteosynthesis with screw fixation in the Bosch osteotomy vs pin fixation.

BRITISH MEDICAL BULLETIN

Maffulli, N. Hallux valgus: effectiveness and safety of minimally invasive surgery. A systematic review. March 2011

- 21 Studies (1991 to 2009)
- Total number of patients: 1,830
- Total number of procedures: 2,197

(percutaneous, MI, or arthroscopic HV surgery)

No	Study	Level of evidence	Type of study	Year of publication	Procedures	Number of patients (feet)	CMS
***	100000TV		Marie Walder (1977)				
1	Baietta et al. 70	IV	Case series	2007	Bosch osteotomy	84 (98)	34
2	Barragan-Hervella et al. 39	IV	Case series	2008	Percutaneous	29 (number of feet not specified)	17
3	Bauer et al. 36	IV	Case series	2009	Percutaneous	168 (189)	51
٠.	Bianchi and Cavenago 71	IV	Case series	2002	Bosch osteotomy	27 (27)	12
	Bösch et al. ⁶³	IV	Case series	2000	Mini-incision	64 (98)	45
3	De Giorgi <i>et al.</i> ⁷²	IV	Case series	2003	Bosch osteotomy	24 (27)	11
	Giannini <i>et al</i> . ³⁷	IV	Case series	2003	Mini-incision	37 (54)	45
1	Giannini et al. ³⁸	IV	Case series	2007	Mini-incision	190 (299)	62
	Kadakia et ol. 47	IV	Case series	2007	Mini-incision	13 (13)	37
0	Leemrijse et al. ⁶⁰	٧	Expert opinion	2008	Percutaneous	Not reported	31
1	Lin et al. ⁴⁰	IV	Case series	2009	Arthroscopy	31 (47)	31
2	Lostia et al. 73	IV	Case series	2007	Bosch osteotomy	71 (82)	34
3	Lui et al. ²⁶	IV	Case series	2008	Arthroscopy	83 (94)	38
4	Maffulli et al. 14	m	Retrospective comparative study	2009	Mini-incision versus Bosch osteotomy	36 (36) per group	57
5	Maffulli et al. ²³	IV	Case series	2005	Mini-incision	15 (15)	36
6	Magnan <i>et al</i> . ³³	IV	Case series	2005	Mini-incision	82 (118)	46
7	Markowski <i>et al</i> . ⁷⁴	IV	Case series	1991	Bosch osteotomy	45 (63)	28
в	Martinez-Nova et al. 42	IV	Case series	2008	Percutaneous	26 (30)	29
9	Portaluri et al. ⁷⁵	IV	Case series	2000	Mini-incision	156 (197)	39
0	Roth et al. 43	ш	Retrospective comparative study	1996	Mini-incision versus Kramer osteotomy	105 (124): subcutaneous group, 88 ft; open group, 36 ft	37

16	Magnan <i>et al</i> . ³³	IV	Case series	2005	Mini-incision	82 (118)	46
17	Markowski et al. ⁷⁴	IV	Case series	1991	Bosch osteotomy	45 (63)	28
18	Martinez-Nova et al. 42	IV	Case series	2008	Percutaneous	26 (30)	29
19	Portaluri et al. ⁷⁵	IV	Case series	2000	Mini-incision	156 (197)	39
20	Roth et al. 43	III	Retrospective comparative study	1996	Mini-incision versus Kramer osteotomy	105 (124): subcutaneous group, 88 ft; open group, 36 ft	37
21	Sanna and Ruiu ⁵⁷	IV	Case series	2005	Mini-incision	83 (90)	40
22	Siclari and Decantis 41	IV	Case series	2009	Mini-incision and arthroscopy	49 (59)	38
23	Solarino et al. ⁷⁶	III	Retrospective comparative study	2006	Bosch versus Hallux splint	80 (80): Bosch group, 40 ft; Hallux splint, 40 ft	40
24	Weinberger et al. ⁷⁷	IV	Retrospective case series	1991	Percutaneous	204 (301)	35

	Pre-OP	Post-OP
HVA	29.95°	16.76°
IMA	13.28°	7.66°
DMMA	14°	6.45°

MIS Literature: A Systematic Review

- Roukis, Thomas. Percutaneous and Minimum Incision Metatarsal Osteotomies: A Systematic Review. J Foot and Ankle Surgery May 2009; 48: 380-387.
 - 3 case series (Level IV)
 - Provide structural realignment that maintained at least 12 month post operative follow up
 - High degree of postoperative patient satisfaction
 - No difference in post operative complication rate in either Open vs Percutaneous Group.

MIS: Literature

Advantage

- 1. Reduced surgery time
- 2. Cost effective
- 3. Quicker recovery
- 4. Immediate Weight bearing

Disadvantage

- 1. Studies of higher levels of evidence with larger numbers of cases should be conducted.
- 2. Pre and Post Op

N Siddiqui, et al. Radiographic Outcomes of a Percutaneous, Reproducible Distal Metatarsal Osteotomy for Mild and Moderate bunions: Multi-center Study. To be published

- 217 HAV, Mean age 49
- Four Centers North America
- Pre-op (Mean): IMA 14.6, HVA 30.7, TSP 5.4
- Post-op (Mean): IMA 4.7, HVA 8.4, TSP 2.0
- All 217 Feet achieved union
- Asymptomatic malunion: 3
- Superficial pin site infection: 42 (19.4%)
- Concluded percutaneous technique apparat to be reproducible across the multiple centers and superior in correcting IM and HVA.
- All patient were immediate WB.

MIS Bunion: Conclusion

- Surgeon comfort with MIS approach
- Patient selection: Check vitamin D 25
- Internal vs. External fixation
- SERI
- Limitation in high level published research

MIS: Foot for thought

"The Important thing is to never stop questioning."

~Albert Einstein

Thank You!